F.A.Q.

Frequently Asked Questions

Who enforces the new requirements?

  • OSHA is an enforcer of safety practices in the workplace OSHA 1910.132(d), and 1926.28(a) states that the employer is responsible to assess the hazards in the work place, select, have, and use the correct PPE, and document the assessment.
  • OSHA considers the NFPA standard a recognized industry practice and the administration’s field inspectors carry with them a copy of the NFPA 70E and use it to enforce safety procedures related to arc flash.
  • The employer is required to conduct a hazard assessment in accordance with 29CFR1910.132(d)(1). Employers who conduct the hazard/risk assessment, and select and require their employees to use PPE, as stated in the NFPA 70E standard, 2015 Edition, are deemed in compliance with the Hazard Assessment and Equipment Selection OSHA Standard.
  • Electrical inspectors across the country are now enforcing the new labeling requirements set forth in the 2014 National Electric Code (NEC).

What data is required to be on the new arc flash warning labels?

110.16 only requires the label state the existence of an arc flash hazard. It is suggested that the party responsible for the label include more information on the specific parameters of the hazard including:

  • Available Short-Circuit Current
  • Flash Protection Boundary
  • Incident energy at 18″ expressed in cal/cm2 PPE required
  • Voltage shock hazard
  • Limited shock approach boundary
  • Restricted shock approach boundary
  • Prohibited shock approach boundary

What is an electrical hazard?

An electrical hazard is defined by NFPA 70E (2015), as a dangerous condition such that contact or equipment failure can result in electric shock, arc flash burn, thermal burn, or blast.

What is the “Shock Protection Boundary”?

The shock protection boundary is identified as limited approach boundary and restricted approach boundary shall be applicable where approaching personnel are exposed to energized electrical conductors or circuit parts.

*Informational Note: In certain instances, the arc flash boundary might be a greater distance from the energized electrical conductors or circuit parts than the limited approach boundary. The shock protection boundaries and the arc flash boundary are independent of each other. The arc flash boundary shall be the distance at which the incident energy equals 5 J/cm2 (1.2 cal/cm2).

What is “Limited Approach Boundary”?

The limited approach boundary defines a boundary around exposed live parts that may not be crossed by unqualified person unless accompanied by qualified persons and informed of the possible hazards.

What is “Restricted Approach Boundary”?

The restricted approach boundary is the area near the exposed live parts that may be crossed only by qualified persons using appropriate shock prevention techniques and equipment. No qualified person shall approach or take any conductive object closer to exposed energized electrical conductors or circuit parts operating at 50 volts or more than the restricted approach boundary.

What is the definition of a “qualified” person?

A qualified person is one who has demonstrated skills and knowledge related to the construction and operation of electrical equipment and installations and has received safety training to identify and avoid the hazards involved.

What is an Arc Flash Risk Assessment?

An Arc Flash Risk Assessment is an overall process of a facility that identifies hazards, estimates the potential severity of injury or damage to health, estimates the likelihood of occurrence of injury or damage to health, and determines if protective measures are required.

What is “incident energy”?

Incident energy is defined in NFPA 70E (2015) as the amount of thermal energy impressed on a surface, a certain distance from the source, generated during an electrical arc event. Incident energy is typically expressed in calories per square centimeter (cal/cm2

What is the difference between NFPA 70E and IEEE 1584 calculations?

NFPA 70E method estimates incident energy based on a theoretical maximum value of power dissipated by arcing faults. This is believed to be generally conservative.

In contrast, IEEE 1584 estimates incident energy with empirical equations developed from statistical analysis of measurements taken from numerous laboratory tests.

What is an arcing fault?

The flow of current through the air between phase conductors or phase conductors and neutral or ground.

An arcing fault can release tremendous amounts of concentrated radiant energy at the point of the arcing in a small fraction of a second resulting in extremely high temperatures, a tremendous pressure blast, and shrapnel hurling at high velocity (in excess of 700 miles per hour).

What causes an Electrical Arc?

An arc occurs when electric current flows between two or more separated energized conducting surfaces. Some arcs are caused by human error including dropped tools, accidental contact with electrical systems, and improper work procedures.

Another common cause of an arc is insulation failure. The fault current’s magnetic effect causes conductors to separate producing an arc. Build-up of dust, impurities, and corrosion on insulating surfaces can provide a path for current. Sparks produced during racking of breakers, replacement of fuses, and closing into faulted lines can also produce an arc. Birds, bees, and rodents can also cause the snapping of leads at connections.

What can happen if I am exposed to arc flash?

  • Exposure to an arc flash frequently results in a variety of serious injuries and in some cases death.
  • Workers have been injured even though they were ten feet or more away from the arc center.
  • Worker injuries can include damaged hearing, eyesight, and severe burns requiring years of skin grafting and rehabilitation.
  • Equipment can be destroyed causing extensive downtime and requiring expensive replacement and repair.
  • The cost of treatment for the injured worker can exceed $1,000,000/case. This does not include very significant litigation fees, insurance increases, fines, accident investigation, etc. This also does not include process loss to the employer.

What can I do to reduce my risk to arc flash exposure?

Worker safety training, preventive maintenance and an effective safety program can significantly reduce arc flash exposure. Preventive maintenance should be conducted on a routine basis to ensure safe operation.

How do you determine what PPE is required?

In order to select the proper PPE, incident energy must be known at every point where workers may be required to perform work on energized equipment. These calculations need to be performed by a qualified person such as an electrical engineer. All parts of the body that may be exposed to the arc flash need to be covered by the appropriate type and quality of PPE. Proper PPE can include Flame Resistant clothing, helmet or headgear, face shield, safety glasses, gloves, shoes, etc. depending upon the magnitude of the arc energy.


Questions & Information

Contact us for more information or additional questions about Arc Flash/NFPA 70E & OSHA compliance for electrical safety in the workplace. 

Call: 877-252-2626 | Email: info@jacmangroupsafety.com | Click here to contact us


Other pages:     What is Arc Flash?        What is NFPA 70E?    


Testimonials

"The instructor really knew his stuff! You could tell he’s been there and done that.  That made a huge difference and my guys loved it. --General Dynamics "